

FILTRASORB® 300

Granular Activated Carbon

Applications

Industrial Wastewater

Groundwater

Surface Water

Pond/Aquarium/

Bottle &

Water Processing

Pharmaceuticals

Drinking Water (Potable)

Granular Activated Carbon

Drinking Water

Industrial

Water Reuse

Reactivation

FILTRASORB 300 activated carbon can be used in a variety of liquid phase applications for the removal of dissolved organic compounds. FILTRASORB 300 has been successfully applied for over 40 years in applications such as drinking and process water purification, wastewater treatment, and food, pharmaceutical, and industrial purification.

Description

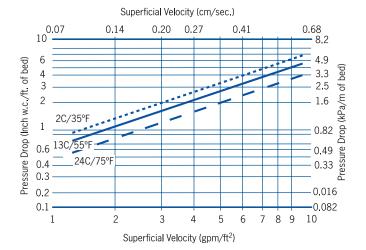
FILTRASORB 300 is a granular activated carbon for the removal of dissolved organic compounds from water and wastewater as well as industrial and food processing streams. These contaminants include taste and odor compounds, organic color, total organic carbon (TOC), and industrial organic compounds such as TCE and PCE.

This activated carbon is made from select grades of bituminous coal through a process known as reagglomeration to produce a high activity, durable, granular product capable of withstanding the abrasion associated with repeated backwashing, hydraulic transport, and reactivation for reuse. Activation is carefully controlled to produce a significant volume of both low and high energy pores for effective adsorption of a broad range of high and low molecular weight organic contaminants.

FILTRASORB 300 is formulated to comply with all the applicable provisions of the AWWA Standard for Granular Activated Carbon (B604) and Food Chemicals Codex. This product may also be certified to the requirements of NSF/ANSI 61 for use in municipal water treatment facilities. Only products bearing the NSF Mark are certified to the NSF/ANSI 61 - Drinking Water System Components - Health Effects standard. Certified Products will bear the NSF Mark on packaging or documentation shipped with the product.

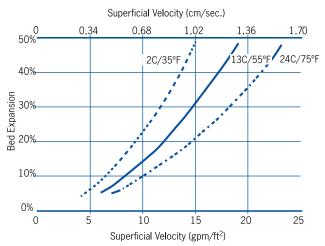
Features / Benefits

- Produced from a pulverized blend of high quality bituminous coals resulting in a consistent, high quality product.
- Carbon granules are uniformly activated through the whole granule, not just the outside, resulting in excellent adsorption properties and constant adsorption kinetics.
- The reagglomerated structure ensures proper wetting while also eliminating floating material.
- High mechanical strength relative to other raw materials, thereby reducing the generation of fines during backwashing and hydraulic transport.
- Carbon bed segregation is retained after repeated backwashing, ensuring the adsorption profile remains unchanged and therefore maximizing the bed life.
- Reagglomerated with a high abrasion resistance, which provides excellent reactivation performance.
- High density carbon resulting in a greater adsorption capacity per unit volume.


Specifications ¹	FILTRASORB 300
lodine Number, mg/g	900 (min)
Moisture by Weight	2% (max)
Effective Size	0.8-1.0 mm
Uniformity Coefficient	2.1 (max)
Abrasion Number	78 (min)
Screen Size by Weight, US Sieve Series	
On 8 mesh	15% (max)
Through 30 mesh	4% (max)
¹ Calgon Carbon test method	

Typical Properties* FILTRASORB 300 Apparent Density (tamped) 0.56 g/cc Water Extractables <1% Non-Wettable <1%

^{*}For general information only, not to be used as purchase specifications.


Typical Pressure Drop

Based on a backwashed and segregated bed

Typical Bed Expansion During Backwash

Based on a backwashed and segregated bed

Design Considerations

FILTRASORB 300 activated carbon is typically applied in down-flow packed-bed operations using either pressure or gravity systems. Design considerations for a treatment system is based on the user's operating conditions, the treatment objectives desired, and the chemical nature of the compound(s) being adsorbed.